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Smoothed Particle Hydrodynamics (SPH) is a meshless Lagrangian tech-
nique for modeling hydrodynamics, and as such offers some unique advantages
when applied to problems of material failure and breakup. The two most im-
portant of these advantages are

e SPH is Lagrangian and robust — i.e., it is never necessary to advect or
remap. Damage models typically involve a number of complex history
variables (such as the damage associated with the Lagrangian mass, crack
orientations, etc.), and advecting these quantities as is required in a mesh
based algorithm is a very challenging problem.

e SPH allows the Lagrangian points to move about, reconnect, or separate
as dictated by the material flow. This naturally allows for the points to
move apart as distinct fragments of material form, resulting in gaps or
cracks between the fragments. Typically mesh based algorithms represent
the “cracks” between fragments as zones of failed material, which is quite
different than allowing voids devoid of material to form.

1 Material modeling

SPH is usually applied to problems of compressible gas dynamics, but equations
of state and strength models appropriate for solids can be implemented in the
same manner as is done for mesh based algorithms. At this time we have imple-
mented the Gruneisen equation of state and Steinberg-Guinan rate independent
strength model in our research SPH code. These have been verified as work-
ing correctly via two test problems: a five material flyer plate impact problem
with experimental velocity diagnostics (checked against the experiment as well
as code to code comparisons; see Figure 1); the Taylor rod impact problem,
wherein a metal rod is fired into a solid wall at a few hundred meters per second
(these results were verified via code to code comparison, Figure 2). We also
have an initial implementation of the Steinberg-Guinan-Lund rate dependent
strength model, but this option has not yet been verified.
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Figure 1: Five material flyer plate impact, velocity diagnostic compared between
experiment, SPH (Spheral), and staggered grid Lagrangian (Kull).

2 Fracture modeling

We have implemented a scalar damage model whose application to SPH is de-
scribed by Benz & Asphaug (1994, 1995, 1999), based on a statistical description
of material flaws due to Grady & Kipp (1980). This model assumes that there is
a randomly distributed set of flaw activation energies € in a material described
by the Weibull distribution

n(ex) = ke, (1)

where n(ex) is the number density of flaws with activation energies € < ex,
and k and m are material dependent parameters. In the SPH implementation,
a set of flaw activation energies is assigned to each SPH point at problem setup
according to this distribution. In an effort to make this flaw assignment as
resolution independent as possible we follow the following prescription. For a
given strain we expect the weakest flaws to become active and break first —
therefore we must ensure the population of weakest flaws is always represented
regardless of resolution. For a volume V' of material, equation 1 implies there
should be a single weakest flaw activation energy: min(e;) = 1/(kV)Y/™. We
pick an SPH node at random and assign it this flaw activation energy. We then
pick another SPH node at random (which could be the same node as previously),
and assign it the next weakest activation energy, 2/(kV)'/™. We proceed in this
manner until all nodes have been assigned at least one flaw. Upon completion
there will be Ny ~ N log(N) total flaws assigned, where N is the number of SPH
nodes in the material. Figure 3 shows the number of flaws assigned to each node
in a volume of steel in this manner, and figure 4 shows how the resulting flaw



Figure 2: Tantalum “Taylor” rod impact problem @ t = 150 psec. Initial
velocity was 250 m/s, and by 150 usec the impact has halted.

distribution function n(es) changes with increasing resolution. The numerically
seeded flaws follow the expected Weibull distribution accurately up to a cutoff,
beyond which there are no stronger flaws represented. As the resolution is
increased we probe the strong flaw distribution further and further, but clearly
as intended the weakest population of flaws are always represented.

Once we have initialized the flaw population, how do we evolve the resulting
damage to the material? As the simulation is advanced in time the instantaneous

strain is measured at each node 7
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Figure 3: Number of flaws assigned to each node.
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Figure 4: Distribution function of flaw activation energies for a variety of reso-
lutions.

where oy; is the maximum eigenvalue of the strain tensor o} # and FE; is Youngs
modulus of the SPH node. If e; exceeds any of the flaw activation energies
associated with the node, it begins to accrue a scalar damage D at the rate

dD!® ¢, 0.4y

= = 3
dt R nmaxhi ’ ( )

where ¢g is the crack growth rate (assumed here to be 0.4 the longitudinal sound
speed ¢;), and R is the radius of the volume in which the strain is relieved by the
crack. We equate this volume with the SPH sampling volume, whose radius is
determined by the radius of compact support of the interpolation kernel 7y, axh;
(h; is smoothing scale of the SPH node, and 7.y is the radius at which the
interpolation kernel falls to zero in units of h). The scalar damage is limited to
the range D € [0,1], where D = 0 implies no damage and D = 1 implies a fully
damaged point.

In the original algorithm Benz & Asphaug apply the damage by scaling
properties such as the strength, negative pressure, etc. of a node by factors of
1 — D;. In our implementation we choose instead to use D to breed new nodes
of a damaged material, which obeys a different equation of state (supporting no
negative pressures) and does not possess any strength. The new node masses



are given by

Dimoia (5)

mu;

mp;

where my; and mp; are the undamaged and damaged node masses, and my;
is the original mass of node i. The net effect should be the same as the Benz
& Asphaug algorithm, but is cleaner in our code. Putting this all together, a
typical simulation proceeds something like the following.

1. At startup a population of flaw activation energies € is assigned to each
node. This set of flaw activation energies remains fixed for the duration
of the problem.

2. As the strain at any given node exceeds these flaw activation energies
damage begins to accrue, breeding a new population of damaged nodes
which gradually begin to replace the failing nodes of the original material.

3. As nodes entirely fail and are converted to the damaged species, frag-
ments of the undamaged material begin to form and move independently
of one and other. These fragments are typically surrounded by the dam-
aged nodes, which freely disperse if sufficient space opens up between the
fragments, creating cracks between the dissociated fragments.

2.1 Fragment identification

The SPH algorithm lends itself readily to the identification of individual frag-
ments of material because, rather than assuming a static connectivity, it builds
the connectivity between nodes on the fly as required. We can therefore identify
fragments as any set of the original undamaged nodes that are still continuously
connected — i.e., the connected neighbors of nodes to which I am connected are
part of my fragment. We have implemented such an algorithm, the results of
which can be seen in Figures 6, 9, & 15 below.

3 Fracture tests

We have tested the fracture model in some idealized test cases: tensile rods
undergoing initially uniaxial strain along their length (as though they are be-
ing pulled apart by their ends, §3.1), and tensile disks undergoing radial strain
such as would occur if the disks were undergoing initially uniform expansion
(83.2). For efficiency these tests are carried out in two dimensional geome-
try, and therefore don’t quantitatively reflect real experiments. However, the
Grady-Kipp formalism makes some analytic predictions about the distributions
of fragments that should result. Additionally, we have performed one realis-
tic test of a gas gun experiment following the fracture and break up of steel
cylinders, described in §3.3.



3.1 Tensile rods

This is a two dimensional test case wherein we take a 20x5 cm steel rod and
impose an initially linear velocity field

V:<U?), ©

which creates a constant strain rate € in the rod. The velocity of the nodes on the
extreme ends of the rod is forced to remain constant throughout the simulation,
ensuring that however slowly the rod is pulled apart it will ultimately break.

For the case of constant strain rate, the Grady-Kipp formalism predicts an
expected most probable fragment size as

6c
L(&) = —9_ ot/ (m43) z=m/(m+3)
€)= g e (7)

In the two strain cases we consider below (vy = 10 m/s and vy = 100 m/s), this
predicts typical fragment sizes of 8.6 cm and 2.9 cm, respectively.

3.1.1 vy=10m/s
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Figure 5: Mass density for the vy = 10 m/s tensile steel rods at t = 500usec.
Shown are the (a) 100x25, (b) 200x50, and (c) 400x100 node resolution cases.

We consider three different resolutions of this problem (100x25, 200x50, and
400x100 nodes), in an effort to examine the resolution dependence of the re-
sulting fragment distribution. Figure 5 plots the nodes colored by mass density
at t = 500usec; each of the simulations shows the rod breaking into roughly



2-3 major pieces as equation 7 predicts (recall the most probably fragment size
predicted is ~ 8.9 cm.) The lower density nodes between the fragments are the
failed nodes which no longer can go into tension in response to the density falling
below the reference density of steel, so these regions take up the expansion and
relieve the strain on the surviving steel fragments. This can be seen even more
clearly in Figure 6, which plots the surviving steel nodes colored by fragment in-
dex as identified by the algorithm described in §2.1. It is interesting to note that
as we increase the resolution in the simulations, the breaks in the rod straighten
up into roughly 45° breaks. This appears to be due to the strain or extension in
the rod being concentrated into a few diagonal bands near the ends of the rod
as the extension continues. Outside of these bands the material nearly stops
stretching as the material strength overcomes the extensional force, concentrat-
ing all the distortion and shear into these few well defined bands. It is along
these bands that the strain rises and the breaks occur when the fragmentation
model is applied.
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Figure 6: Identified fragments in the vg = 10 m/s tensile steel rods at t =
500usec. Shown are the (a) 100x25, (b) 200x50, and (c) 400x100 node resolution

cases.

Figure 7 plots the cumulative mass distribution function of the fragments,
i.e., the total mass contained in fragments of a given mass or less. The masses
in this figure are normalized to the total mass in the initial rod, and failed nodes
are counted as individual fragments in order to ensure the total mass sum is the
same for all three simulations. It appears that the mass distribution function
of the fragments converges (at least in the intermediate and high resolution
simulations), which is consistent with the qualitative observation that the bar
breaks into roughly the same number of major fragments in each case. This
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Figure 7: Cumulative mass distribution of fragments in the vy = 10 m/s tensile
steel rods at ¢t = 500usec. Failed nodes are counted as individual fragments for
mass conservation.

convergence in the mass properties seems to be fairly independent of how well
the occurrence of shear bands is resolved.

3.1.2 vy =100 m/s

In this version of the tensile rod test case we increase vy from 10 to 100 m/s,
effectively increasing the strain rate by a factor of 10. The Grady-Kipp for-
malism now predicts a much smaller typical fragment size (~ 2.9 cm), and this
qualitatively concurs with what we see in the plots of the nodes colored by mass
density in Figure 8. Looking at the remaining steel nodes in identified frag-
ments (Figure 9), we can see the majority of the nodes in the lowest resolution
case have simply turned into unresolved fully damaged “dust”, while the inter-
mediate and high-resolution cases have at least maintained some recognizable
fragments. Qualitatively we again see that as we increase resolution the cracks
become straighter and more diagonal, though there are now many more of them.
Considering the cumulative fragment mass distribution function in Figure 10,
it does not appear the fragment distribution has converged even in this simple
gross measure in any of our runs, suggesting that for this higher strain rate case
we need to go to even higher resolution before we can expect to see convergence
in these fragment properties.
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Figure 8: Mass density for the vy = 100 m/s tensile steel rods at ¢ = 500usec.
Shown are the (a) 100x25, (b) 200x50, and (c) 400x100 node resolution cases.

3.1.3 Strain — why do the rods break where they do?

It is interesting to examine the history of the strain in these simple tensile rod
test cases to see how the material winds up breaking where it does, and why.
Figure 11 plots the nodes in the intermediate resolution vg = 10 m/s test case
colored by the strain (Eq. 2) at three time slices: 37.5, 62.5, and 100 psec. At
the early time we can see that the strain is rising fairly uniformly throughout
the rod, with some variation due to the differing damage that is being done
to the nodes in accordance with variation in the flaw activation energies. By
62.5 usec, the strain has risen to the point that the first fully failed nodes have
formed in the upper left quadrant. You can see around these failed nodes that
the strain is increased at the tips of the “crack”, and decreased along the edges
of the crack. This is due to the nodes at the ends of the crack taking up the
extensional strain holding the bar together, and the nodes on either side of
the crack having their strain relieved because they no longer communicate with
unfailed nodes across the far side of the crack and therefore do not see the
velocity differential. This pattern will naturally cause the crack to propagate at
the tips and relieve failure on either side of the crack, as we would physically
expect. At 100 psec the cracking process has progressed much further — the
blue relieved areas where the strain has been largely alleviated have swept out
away from the forming cracks, which have nearly extended across the width of
the bar.



(a) 100x25 (b) 200x50

Pseudocobr Pseudocobr

Var: Fragment inclex Var: Fvogzmem inclex
— 230 — 200

Py
1725 i 1650

— 1150 —11.00

—— 5.750
—

T
= 0 = 0
Men: 23.00 Men: 22.00
Min: 0.000 Min: 0.000

B 5.500
—

(c) 400x100

Pseudocolor
Var: Frugamsm inclex
— 400

4 »
3300 fa, ]
1 o
"
| 3

—2200

—
f—— 1100

=*0 000

Mei: 4400
Min: 0.000

Figure 9: Identified fragments in the vy = 100 m/s tensile steel rods at ¢t =
500usec. Shown are the (a) 100x25, (b) 200x50, and (c) 400x100 node resolution

cases.

3.2 Tensile disks

We now consider a test case with biaxial strain. We take a steel disk (again in
two dimensions) and impose an initial radial velocity field according to v, = vor.
The steel disk is 10 cm in radius, and we choose vy = 100 m/s — this is a higher
strain rate case than the tensile rods we considered in the previous section. We
also do not impose a forced boundary condition on the outer regions of the disk,
so the strength of the steel is allowed to slow the expansion.

Figure 12 shows the nodes colored by mass density at ¢ = 25usec for two
different resolutions: n, (number of radial nodes) = 100 and 200. In each radial
ring the nodes are spaced azimuthally with the same spacing as in radius, so
that there are approximately four times as many nodes in the high resolution
simulation as there are in the low resolution case. As in the tensile rod case, the
low resolution nodes are the failed material which is now taking up the expansion
of the disk. Despite the resolution difference qualitatively the pattern of failure
in both simulations is quite similar: the failed regions appear wider in the low
resolution case because the cracks must fail approximately four nodes across
to break communication in the unfailed material across the crack and relieve
strain. The higher resolution simulation simply resolves this four node spacing
on smaller scales. Unlike the tensile rod tests, in this case the failed material
has no way to escape the system because the outer portion of the disk has not
failed yet — there is no way for the fragments to separate and release the failed
nodes.

Figure 13 plot the nodes at the same time colored by radial velocity. We

10
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Figure 10: Cumulative mass distribution of fragments in the vg = 100 m/s ten-
sile steel rods at ¢t = 500usec. Failed nodes are counted as individual fragments
for mass conservation.

can see in this figure that the outer portions of the disk have ceased expansion
and are in fact recompressing. Therefore the failure in the disk has by this time
essentially halted and the crack pattern is frozen in. Figure 14 shows the nodes
colored by damage D. It is clear that there is extensive damage throughout
the disk by this time. We know from other simulations if we push the initial
expansion velocity much higher (say vo = 150 m/s, then the disk essentially
vaporizes into failed nodes.

Figure 15 plots the fragments that are identified in the two simulations. We
can see that although the failure pattern in the two is quite similar, the lower
resolution run was able to form more distinct fragments. The cracks in the
intermediate radii in the high resolution run did not connect and build distinct
fragments, resulting in a different fragment distribution. We can see a minor
effect due to this on the cumulative fragment mass distribution function in
Figure 16, though both are dominated by the single large “fragment” consisting
of the outer regions of the disk. The fragment distribution function is quite
similar between the two cases, if we factor out the difference in the first step of
the function due to the differing node masses in the failed material which makes
up the lowest mass “fragments.”

11
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Figure 11: Strain at three different times for 200x50 vp = 10 m/s tensile steel
rod.

3.3 Expanding tube

Our final test case is a three-dimensional model of a published gas gun experi-
ment (Vogler et al. 2003). In this problem a cylindrical steel tube (5 cm long,
12.7 mm in diameter, with a 3 mm wall thickness) is placed against the anvil at
the barrel of a gas gun. A lexan plug half the length of the tube is inserted in
the tube on the anvil end, while a another equal length lexan projectile is fired
into the tube at 1.92 km/s (see Figure 17 for a picture of the initial material
setup in this problem). When the projectile impacts on the lexan plug within
the tube, the two compress in length and expand in circumference against the
inside of the tube, causing it to expand in radius. The steel tube is stretched
and ultimately fails, breaking into fragments. There are a number of diagnostics
available for this experiment (high speed photography of the breakup, VISAR
velocity data on the expansion of the tube at several points, soft-capture of
the fragments for experimental determination of the fragment properties, etc.),
which makes this problem an appealing test case for models of fragmentation.

Figure 18 shows the velocities of the various materials during the initial entry
of the projectile into the steel tube and impact of the projectile on the lexan
plug. These velocities are colored logarithmically to enhance the visualization
of the disturbance propagating through the system during this early evolution.
As the projectile transits down the tube it scrapes the inner surface, causing
some damage on this surface before the impact on the plug occurs.

Figure 19 shows the state of the system at ¢ = 26.75usec, which is as far as
the simulation had advanced at this writing. In panel (a) you can clearly see
the lexan plug and projectile have expanded against the surrounding steel tube,

12
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Figure 12: Mass density at t = 25usec in one quadrant of the tensile disk. Two
simulations are shown: (a) uses 100 nodes in radius, while (b) uses 200.

distending it significantly. Panel (b) shows the mass density of the damaged
steel (which at this point is still entirely coexistent with the undamaged steel).
In this panel we can clearly see the thin shell of damaged material (on the right
side) caused by the entry of the projectile into the tube, while the majority of the
damage is in the expanding central portion of the tube. Panels (c¢) & (d) show
the velocity of the undamaged material, in which we can just see the beginning
of a fully failed rupture through the tube near the center of the expansion. Note
also the trough in the velocity on the left-hand (anvil) side of the tube. This
is part of a wave or ripple that is propagating down the tube from the central
expansion point, which will be significant in the interpretation of the VISAR
data below.

Figure 20a depicts the positions the three VISAR velocity measurements
were made at in the experiment. In order to compare the SPH simulation
to these measurements, we averaged the radial motion of all the nodes on the
surface of the tube at these positions, resulting in the time history comparison in
Figure 20b. The simulations follow the bulk properties of these velocity curves,
but show a significant ringing or oscillation around the experimental values.
Recall in Figure 19 we noted the presence of a wave propagating down the length
of the tube from the expansion point — this wave seems to be responsible for the
variation we’re seeing in the simulated VISAR data, and it is not present in the

13
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Figure 13: Radial velocity at ¢ = 2busec in one quadrant of the tensile disk
simulations. Note that the outermost radii have turned around.

experiment. Our current interpretation is that this error in the simulation is
likely due to problems in our material modeling. Possibly the rate-independent
Steinberg-Guinan strength model is not appropriate at these strain rates — the
cause of this discrepancy remains under investigation.

4 Summary and future work

We have reported on the current status of an ongoing investigation into the
utility of SPH in modeling problems of material failure and fracture. We have
implemented standard analytic equations of state and strength models to model
the hydrodynamic response of solids, and a simple published failure model due
to Benz & Asphaug (1994, 1995, 1999) to model fracture and breakup of those
materials. We have tested this fracture model with idealized test problems
(tensile rods and disks), and one realistic model of a gas gun experiment. These
tests so far indicate that our results are qualitatively reasonable, though the
VISAR velocity comparison for the gas gun experiment shows that our material
modeling needs some improvement. Future work we intend to pursue includes

e Apply these techniques to a wider variety of test problems.

e Implement improved strength modeling and test whether this improves

14
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Figure 14: Scalar damage D at t = 25usec in one quadrant of the tensile disk
simulations. Recall D € [0,1], with D = 0 an entirely undamaged node and
D =1 a fully damaged node.

the match with the experimental data in the gas gun experiment.
e Implement a wider variety of material failure models.

e Incorporate the fragment identification algorithm into the run time scheme,
so that fragments can be identified and spun off as new materials during
the coarse of a run. This is necessary due to the fact that, because SPH
is a continuously reconnecting algorithm, in the current implementation
if two distinct fragments of the same material collide they will reconnect,
and strength will take effect nonphysically between the fragments again.

e Assorted numerical improvements: improved treatment of of surfaces; use
of the summed mass density definition rather time integrated; application
of ASPH (Adaptive Smoothed Particle Hydrodynamics); etc.

This work was performed under the auspices of the U.S. Department of
Energy by the University of California Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.
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Figure 15: Fragments identified in the tensile disk simulations.
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Figure 18: Velocities in the gas gun simulation during projectile entry into the

steel tube.
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Figure 19: State of the expanding tube simulation @ ¢ = 26.75usec. Shown
are (a) mass density of all materials from the interior; (b) mass density of the
damaged steel from the exterior; (c) velocity of the undamaged steel (exterior
view); (d) velocity of the undamaged steel (interior view).
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Figure 20: VISAR velocity data for the expanding tube gas gun experiment.
Panel (a) depicts the positions of the three VISAR probes along the tube: probes
A, B, & C at 25, 20, & 15 mm from the anvil, respectively. Panel (b) shows the
time history of the VISAR measurements, comparing experiment to the SPH
simulation.
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